q-Supercongruences from squares of basic hypergeometric series
نویسندگان
چکیده
We give some new q-supercongruences on truncated forms of squares basic hypergeometric series. Most them are modulo the cube a cyclotomic polynomial, and two fourth power polynomial. The main ingredients our proofs creative microscoping method, lemma El Bachraoui, Chinese remainder theorem for coprime polynomials. also propose several related conjectures further study.
منابع مشابه
Gaussian Hypergeometric series and supercongruences
Let p be an odd prime. In 1984, Greene introduced the notion of hypergeometric functions over finite fields. Special values of these functions have been of interest as they are related to the number of Fp points on algebraic varieties and to Fourier coefficients of modular forms. In this paper, we explicitly determine these functions modulo higher powers of p and discuss an application to super...
متن کاملGaussian Hypergeometric Series and Extensions of Supercongruences
Let p be an odd prime. The purpose of this paper is to refine methods of Ahlgren and Ono [2] and Kilbourn [13] in order to prove a general mod p congruence for the Gaussian hypergeometric series n+1Fn(λ) where n is an odd positive integer. As a result, we extend three recent supercongruences. The first is a result of Ono and Ahlgren [2] on a supercongruence for Apéry numbers which was conjectur...
متن کاملNonterminating Basic Hypergeometric Series and the q-Zeilberger Algorithm
We present a systematic method for proving nonterminating basic hypergeometric identities. Assume that k is the summation index. By setting a parameter x to xqn, we may find a recurrence relation of the summation by using the q-Zeilberger algorithm. This method applies to almost all nonterminating basic hypergeometric summation formulas in the book of Gasper and Rahman. Furthermore, by comparin...
متن کاملBasic Hypergeometric Series
Abstract. We compute the inverse of a specific infinite r-dimensional matrix, thus unifying multidimensional matrix inversions recently found by Milne, Lilly, and Bhatnagar. Our inversion is an r-dimensional extension of a matrix inversion previously found by Krattenthaler. We also compute the inverse of another infinite r-dimensional matrix. As applications of our matrix inversions, we derive ...
متن کاملInversion of Bilateral Basic Hypergeometric Series
We present a new matrix inverse with applications in the theory of bilateral basic hypergeometric series. Our matrix inversion result is directly extracted from an instance of Bailey’s very-well-poised 6ψ6 summation theorem, and involves two infinite matrices which are not lower-triangular. We combine our bilateral matrix inverse with known basic hypergeometric summation theorems to derive, via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas
سال: 2022
ISSN: ['1578-7303', '1579-1505']
DOI: https://doi.org/10.1007/s13398-022-01364-9